Abstract

This paper provides an integrated view on various aspects of reactor design for photocatalytic reactions and presents a scale-up study of photocatalytic reactors. This study focuses on degrading organic pollutants in the effluent of an integrated gasification coal combustion plant over TiO2, with the target of degrading cyanide to below its allowable emission threshold set by European legislation. Here, we show the interplay of different efficiencies that affect the overall apparent photonic efficiency and the reactor volume required to achieve a certain objective in conversion. The chosen reactor configuration is rectangular slurry-bubble-columns-in-series to ensure a good mass transfer rate per photoreactor while approaching plug-flow behavior as a sum, and a high reactor surface-area-to-volume ratio for a good capture of incident photons. We consider a simple 1D photonic description of a photoreactor, in the direction of incident solar light, and implement a bidirectional scattering model for photocatalytic particles and bubbles to calculate the local rate of photon absorption and the photon absorption efficiency in the photoreactor. We show that, implementing the principles of process intensification, the large scale degradation of cyanide to below European emission limits is achievable.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call