Abstract

Pillared clays (PILCs) are interesting materials mostly due to their high basal spacing and surface area, which make them suitable for adsorption and catalysis applications, for example. However, the production of these materials on industrial scale is dependent on research about what parameters influence the process. Thus, the objective of this work was to evaluate what parameters influence the pillaring procedure. For this, pillared clays were synthesized following three series of experiments. In the first series, the effect of the amount of water in a clay suspension was evaluated. The best results were obtained by using diluted suspensions (1 g of clay to 100 mL of water). In the second series, several pillaring methods were tested. In the third series, the amount of pillared clay was raised to 50 g. Fifty grams of pillared clay can be obtained using the pillaring agent synthesized at 60 °C with further aging for 24 h, and this material exhibited high basal spacing (17.6 Å) and surface area (233 m2/g). These values are comparable with the traditional pillaring method using only 3 g of clay.

Highlights

  • Clays are abundant natural materials with a low cost

  • Three series of experiments were studied in order to verify their influence in the final properties of pillared clays

  • In series 2, the most outstanding pillaring methodology employed was method 11, in which the pillaring agent was synthesized in 24 h with heating at 60 ◦ C

Read more

Summary

Introduction

Clays are abundant natural materials with a low cost. Clay pillaring occurs through cation exchange of natural cations (Ca2+ , Na+ , Mg2+ ). Present between clay layers for bigger cations such as polyhydroxy cations of Al (a pillaring agent). These larger cations act as pillars, separating the clay layers, increasing the basal space and creating microporosity. The calcination provides stability to the pillared clay, and the resultant material presents small cavities and a large surface area. These properties, combined with the low cost of clay, make pillared clays alternative catalysts to zeolites

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call