Abstract

A number of evolving medical therapies call for the controlled expansion of primary human T lymphocytes. After encapsulation in sodium cellulose sulfate-poly(diallyldimethyl) ammonium chloride polyelectrolyte capsules, T lymphocytes can be expanded without persisting activation. Here, the challenge of scaling up this process is addressed. Encapsulated T lymphocytes were cultured in spinner flasks as well as in several types of the bioreactor, including fixed and fluidized beds, a waved cell bag, and a standard stirred tank reactor (STR; 1-L scale). Two proprietary T lymphocyte culture media as well as a standard RPMI-based medium were used. As before, encapsulation coincided with the presence of only a low fraction of activated T lymphocytes (peripheral blood T cells) in the total population. Unexpectedly, growth rates were lower in well-mixed reactors than those in cultivations under static conditions, that is, in T-flasks. Switching the STR to low oxygen conditions (40% air saturation) improved the growth rates to the level of the static cultures and thus forms the potential basis for efficient scale-up of T lymphocyte expansion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.