Abstract

BackgroundLignocellulosic biorefineries have tonnage and throughput requirements that must be met year round and there is no single feedstock available in any given region that is capable of meeting the price and availability demands of the biorefineries scheduled for deployment. Significant attention has been historically given to agriculturally derived feedstocks; however, a diverse range of wastes, including municipal solid wastes (MSW), also have the potential to serve as feedstocks for the production of advanced biofuels and have not been extensively studied. In addition, ionic liquid (IL) pretreatment with certain ILs is receiving great interest as a potential process that enables fractionation of a wide range of feedstocks. Acid catalysts have been used previously to hydrolyze polysaccharides into fermentable sugars following IL pretreatment, which could potentially provide a means of liberating fermentable sugars from lignocellulose without the use of costly enzymes. However, successful optimization and scale-up of the one-pot acid-assisted IL deconstruction for further commercialization involve challenges such as reactor compatibility, mixing at high solid loading, sugar recovery, and IL recycling, which have not been effectively resolved during the development stages at bench scale.ResultsHere, we present the successful scale-up demonstration of the acid-assisted IL deconstruction on feedstock blends of municipal solid wastes and agricultural residues (corn stover) by 30-fold, relative to the bench scale (6 vs 0.2 L), at 10% solid loading. By integrating IL pretreatment and acid hydrolysis with subsequent centrifugation and extraction, the sugar and lignin products can be further recovered efficiently. This scale-up development at Advanced Biofuels/Bioproducts Process Demonstration Unit (ABPDU) will leverage the opportunity and synergistic efforts toward developing a cost-effective IL-based deconstruction technology by drastically eliminating enzyme, reducing water usage, and simplifying the downstream sugar/lignin recovery and IL recycling.ConclusionResults indicate that MSW blends are viable and valuable resource to consider when assessing biomass availability and affordability for lignocellulosic biorefineries. This scale-up evaluation demonstrates that the acid-assisted IL deconstruction technology can be effectively scaled up to larger operations and the current study established the baseline of scaling parameters for this process.

Highlights

  • Lignocellulosic biorefineries have tonnage and throughput requirements that must be met year round and there is no single feedstock available in any given region that is capable of meeting the price and availability demands of the biorefineries scheduled for deployment

  • As the continuation of the collaborative work, the current study aims to (1) evaluate and address the engineering and operation challenges to scale up ionic liquid (IL) acidolysis process; (2) investigate the response and scaling effects of municipal solid wastes (MSW)/CS blends for sugar conversion; (3) optimize the process by integrating with efficient and scalable product separation and recovery process; and (4) provide baseline parameters to facilitate the further pilot-scale operations

  • The corrosion tests were performed in total six cycles of experiments to simulate the environment of biomass IL pretreatment at 140 °C and acidolysis at 105 °C

Read more

Summary

Introduction

Lignocellulosic biorefineries have tonnage and throughput requirements that must be met year round and there is no single feedstock available in any given region that is capable of meeting the price and availability demands of the biorefineries scheduled for deployment. Significant attention has been historically given to agriculturally derived feedstocks; a diverse range of wastes, including municipal solid wastes (MSW), have the potential to serve as feedstocks for the production of advanced biofuels and have not been extensively studied. A diverse range of wastes, including municipal solid wastes (MSW), possess great potentials to serve as feedstocks for the production of biofuels and biochemicals [6,7,8,9,10], and have not been extensively studied to date in terms of conversion efficiency and scale-up performance. Given the seasonal availability of plant-derived feedstocks, and the continual supply and established infrastructure for MSW, it will be advantageous and important to consider use of MSW as an advanced biofuels’ feedstock, especially as a blending agent to help normalize the composition of the biomass inputs to a biorefinery which has a narrow tolerance to variation in biomass composition [13]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.