Abstract

The large Atriums of airports and railway stations facilitate the access to transport vehicles including shopping malls, cultural spaces, etc. For this reason, they are used by an elevated number of passengers and visitors. Numerous malls contain a large atrium too, as a principal access or as a food court, and they usually have high occupant loads. In case of fire, the smoke can affect human health seriously, and people may be unable to reach a safe place before being overcome by the conditions created by the fire. The traditional approach to fire protection by compartmentation is not applicable to these large volume spaces and the ability of sprinklers to suppress fire in spaces with high ceilings is limited. This work evaluated—using scale tests, fire computer modeling and analytical methods—a comparative analysis of the different results obtained for the smoke control in large atria when the smoke filling approach is applied. Smoke layer and plume temperatures have been registered during the scale test—based on the Froude Modeling—and they have been compared opposite to the FDS scale simulation and the FDS large scale simulation. Smoke layer descend has been studied and compared for the scale test, the computer simulations developed and the empirical equations used. The results demonstrated that the evacuation time calculation is conservative when the zone computer model CFAST, the field computer model FDS or the empirical equations are used, although it turns out to be difficult to define the interface height based on the temperatures registered during the scale tests. The zone computer models generate results faster than field computer models or smoke tests, so it would be necessary to develop better calculation algorithms to define the smoke layer interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.