Abstract

The deviations δζm (‘‘intermittency corrections’’) from classical (‘‘K41’’) scaling ζm=m/3 of the mth moments 〈‖u(p)‖m〉 in high Reynolds number turbulence are calculated, extending a method to approximately solve the Navier–Stokes equation described earlier. It is suggested to introduce the notion of scale resolved intermittency corrections δζm(p), because these δζm(p) are found to be large in the viscous subrange, moderate in the nonuniversal stirring subrange but, surprisingly, extremely small if not zero in the inertial subrange. If ISR intermittency corrections persisted in experiment up to the large Reynolds number limit, it would show by calculation that this could be due to the opening of phase space for larger wave vectors. In the higher order velocity moments 〈‖u(p)‖m〉 the crossover between inertial and viscous subrange is (10ηm/2)−1, thus the inertial subrange is smaller for higher order moments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.