Abstract

Based on the negative binomial model for the duration of wet periods measured in days, an asymptotic approximation is proposed for the distribution of the maximum daily precipitation volume within a wet period. This approximation has the form of a scale mixture of the Frechet distribution with the gamma mixing distribution and coincides with the distribution of a positive power of a random variable having the Snedecor-Fisher distribution. The proof of this result is based on the representation of the negative binomial distribution as a mixed geometric (and hence, mixed Poisson) distribution and limit theorems for extreme order statistics in samples with random sizes having mixed Poisson distributions. Some analytic properties of the obtained limit distribution are described. In particular, it is demonstrated that under certain conditions the limit distribution is mixed exponential and hence, is infinitely divisible. It is shown that under the same conditions the limit distribution can be represented as a scale mixture of stable or Weibull or Pareto or folded normal laws. The corresponding product representations for the limit random variable can be used for its computer simulation. Several methods are proposed for the estimation of the parameters of the distribution of the maximum daily precipitation volume. The results of fitting this distribution to real data are presented illustrating high adequacy of the proposed model. The obtained mixture representations for the limit laws and the corresponding asymptotic approximations provide better insight into the nature of mixed probability ("Bayesian") models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call