Abstract

ABSTRACTThe main objective of this paper is to develop a full Bayesian analysis for the Birnbaum–Saunders (BS) regression model based on scale mixtures of the normal (SMN) distribution with right-censored survival data. The BS distributions based on SMN models are a very general approach for analysing lifetime data, which has as special cases the Student-t-BS, slash-BS and the contaminated normal-BS distributions, being a flexible alternative to the use of the corresponding BS distribution or any other well-known compatible model, such as the log-normal distribution. A Gibbs sample algorithm with Metropolis–Hastings algorithm is used to obtain the Bayesian estimates of the parameters. Moreover, some discussions on the model selection to compare the fitted models are given and case-deletion influence diagnostics are developed for the joint posterior distribution based on the Kullback–Leibler divergence. The newly developed procedures are illustrated on a real data set previously analysed under BS regression models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.