Abstract

Scale locality is a key concept in turbulent cascade theory and is also associated with reflection symmetry. Vortex stretching is proven to participate in the helicity cascade process while destroying the conservative characteristic of enstrophy transfer in three-dimensional flows. Numerical evidence indicates that a turbulent structure with scale L will also largely transfer its helicity to structures with scales of around 0.3L. However, the scale locality of the helicity cascade is slightly weaker than that of the energy cascade in physical space. The weaker scale locality suggests that more scales should be involved for turbulent modeling of helical turbulence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call