Abstract
Nature reveals itself in similar structures of different scales. A child and an adult share similar organs yet dramatically differ in size. Comparing the two is a challenging task to a computerized approach as scale and shape are coupled. Recently, it was shown that a local measure based on the Gaussian curvature can be used to normalize the local metric of a surface and then to extract global features and distances. In this paper we consider higher dimensions; specifically, we construct a scale invariant metric for volumetric domains which can be used in analysis of medical datasets such as computed tomography (CT) and magnetic resonance imaging (MRI).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.