Abstract

Inflationary observables of a classically scale invariant model, in which the origin of the Planck mass and the electroweak scale including the right-handed neutrino mass is chiral symmetry breaking in a QCD-like hidden sector, are studied. Despite a three-field inflation the initial-value-dependence is strongly suppressed thanks to a river-valley like potential. The model predicts the tensor-to-scalar ratio r of cosmological perturbations smaller than that of the R 2 inflation, i.e., 0.0044 ≳ r ≳ 0.0017 for e-foldings between 50 and 60: the model will be consistent even with a null detection at LiteBird/CMB-S4. We find that the non-Gaussianity parameter f NL is O(10-2), the same size as that of single-field inflation. The dark matter particles are the lightest Nambu-Goldstone bosons associated with chiral symmetry breaking, which are decay products of one of the inflatons and are heavier than 109 GeV with a strongly suppressed coupling with the standard model, implying that the dark matter will be unobservable in direct as well as indirect measurements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call