Abstract

Abstract Ants (Hymenoptera: Formicidae) have great potential to exert influence over the morphological evolution of their obligate mutualist partners. Obligately myrmecophilic mealybugs are noted for their unusual morphology, and while this is often attributed to their relationship with ants, a quantitative assessment of this link is lacking. We address this need by evaluating morphological change among mealybugs as a function of ant association. This study considers the associates of 2 independent ant clades—Acropyga Roger, 1862 ants associated with root mealybugs from the families Xenococcidae and Rhizoecidae and herdsmen ants from the Dolichoderus cuspidatus (Smith, F., 1857) species-group associated with mealybugs from the tribe Allomyrmococcini (Pseudococcidae)—and compares them to free-living or potentially myrmecophilic species sampled from among the mealybugs and root mealybugs. We use a combination of geometric morphometric and linear datasets to evaluate characteristics of body shape, body size, leg metrics, and ostiole development. Obligate myrmecophily significantly influences both body shape and size. Myrmecophilous mealybugs are smaller than their free-living counterparts and are either pyriform or rotund in shape rather than oval. Ant-associates from Rhizoecidae also have significantly reduced anterior pairs of ostioles compared to free-living species. Ostioles are involved in defense against natural enemies and mutualist ants typically protect their partners, presumably supplanting the need for structures like ostioles among myrmecophilous species. We discuss the influence ants have on the evolution of their associates in the context of domestication and offer avenues for future exploration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call