Abstract

Scale free graphs have attracted attention as their non-uniform structure that can be used as a model for many social networks including the WWW and the Internet. In this paper, we propose a simple random model for generating scale free k-trees. For any fixed integer k, a k-tree consists of a generalized tree parameterized by k, and is one of the basic notions in the area of graph minors. Our model is quite simple and natural; it first picks a maximal clique of size k + 1 uniformly at random, it then picks k vertices in the clique uniformly at random, and adds a new vertex incident to the k vertices. That is, the model only makes uniform random choices twice per vertex. Then (asymptotically) the distribution of vertex degree in the resultant k-tree follows a power law with exponent 2 + 1/k, the k-tree has a large clustering coefficient, and the diameter is small. Moreover, our experimental results indicate that the resultant k-trees have extremely small diameter, proportional to o(log n), where n is the number of vertices in the k-tree, and the o(1) term is a function of k.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.