Abstract
Carbon nanostructures are promising ballistic protection materials, due to their low density and excellent mechanical properties. Recent experimental and computational investigations on the behavior of graphene under impact conditions revealed exceptional energy absorption properties as well. However, the reported numerical and experimental values differ by an order of magnitude. In this work, we combined numerical and analytical modeling to address this issue. In the numerical part, we employed reactive molecular dynamics to carry out ballistic tests on single, double, and triple-layered graphene sheets. We used velocity values within the range tested in experiments. Our numerical and the experimental results were used to determine parameters for a scaling law. We find that the specific penetration energy decreases as the number of layers (N) increases, from ∼15 MJ/kg for N = 1 to ∼0.9 MJ/kg for N = 350, for an impact velocity of 900 m/s. These values are in good agreement with simulations and experiments, within the entire range of N values for which data is presently available. Scale effects explain the apparent discrepancy between simulations and experiments.
Highlights
The combination of very high Young’s modulus (1 TPa), ultimate strength (130 GPa), and low density values (≈2200 kg.m−3) makes graphene an ideal candidate material for ballistic protection applications[1]
Follow-up molecular dynamics (MD) studies elucidated the atomistic structures formed during penetration of graphene monolayers and the role played by defects[13], determined the propagation velocity of the impact-induced stress wave[14], and studied the failure mechanism of the graphene sheets[15]
Our results for perpendicular impacts were in good agreement with experimental data, suggesting these patterns are scale independent
Summary
The combination of very high Young’s modulus (1 TPa), ultimate strength (130 GPa), and low density values (≈2200 kg.m−3) makes graphene an ideal candidate material for ballistic protection applications[1]. Follow-up molecular dynamics (MD) studies elucidated the atomistic structures formed during penetration of graphene monolayers and the role played by defects[13], determined the propagation velocity of the impact-induced stress wave[14], and studied the failure mechanism of the graphene sheets[15]. These simulations revealed extremely high specific energy penetration values, an order of magnitude greater than those measured in experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.