Abstract

Slender-bodied organisms swimming with whole-body undulations exhibit what appears to be a high degree of kinematic parameter conservation, which is independent of body size. However, organisms of very different sizes swim in fundamentally different physical realms, owing to the relative scaling of viscous and inertial fluid stresses as a function of size and speed. In light of the size-dependent fluid forces, the kinematic constancy suggests three hypotheses: (1) swimming organisms adopt a single "ideal" swimming mode requiring the modification of muscle forces or motor patterns through ontogeny, (2) swimming kinematics are determined predominantly by the passive mechanical interaction of the body and the fluid, resulting in a single swimming mode independent of absolute body size, or (3) while undulatory swimming kinematics may be similar between organisms, there are important size-dependent kinematic differences. In this study, I address this issue by examining the swimming kinematics and dynamics of the medicinal leech Hirudo medicinalis L. as a function of body size. Over a 5-fold increase in body length, the relative amplitude of body undulations during swimming did not change; however, swimming speed, propulsive wave speed, and propulsive wave frequency all decreased, while propulsive wave number increased slightly, strongly supporting hypothesis 2. To determine the source of the observed size-dependent swimming kinematics, I manipulated the dynamic viscosity of the organism's fluid environment to alter the constraints placed on swimming behavior by the physical surroundings. In the elevated-viscosity treatment, all kinematic parameters changed in the opposite direction to that predicted by hypothesis 2, rejecting both the idea that swimming kinematics are simply determined by passive mechanical interactions and that leeches have a target swimming mode under active control.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.