Abstract
Physiological variation among and within species is thought to play a key role in determining distribution patterns across environmental gradients. We tested inter‐ and intraspecific variation in cold and heat tolerances for three grasshopper species (genus Kosciuscola) with overlapping elevation distributions, across their respective ranges in the Australian mountains. Of the three cold tolerance traits measured, the critical thermal minimum was the only trait to vary among species, with greater cold tolerance associated with a distribution extending to a higher elevation. Cold tolerance limits were regularly exceeded in exposed microhabitats, suggesting a role for cold adaptation in structuring species distribution patterns. In contrast to cold tolerance, heat tolerance variation was primarily partitioned within species. For two species, populations from treeless alpine habitat were more heat tolerant than their lower‐elevation counterparts, supporting recent models that suggest greater exposure to temperature extremes at higher elevations. These contrasting patterns of physiological variation among and within species emphasise the importance of considering variation within species when attempting to understand how species distributions are affected by thermal extremes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.