Abstract
Motor imagery electroencephalography (EEG) has been successfully used in locomotor rehabilitation programs. While the noise-assisted multivariate empirical mode decomposition (NA-MEMD) algorithm has been utilized to extract task-specific frequency bands from all channels in the same scale as the intrinsic mode functions (IMFs), identifying and extracting the specific IMFs that contain significant information remain difficult. In this paper, a novel method has been developed to identify the information-bearing components in a low-dimensional subspace without prior knowledge. Our method trains a Gaussian mixture model (GMM) of the composite data, which is comprised of the IMFs from both the original signal and noise, by employing kernel spectral regression to reduce the dimension of the composite data. The informative IMFs are then discriminated using a GMM clustering algorithm, the common spatial pattern (CSP) approach is exploited to extract the task-related features from the reconstructed signals, and a support vector machine (SVM) is applied to the extracted features to recognize the classes of EEG signals during different motor imagery tasks. The effectiveness of the proposed method has been verified by both computer simulations and motor imagery EEG datasets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.