Abstract

AbstractIt has been known for decades that isothermal flow fields in porous media can become unstable, resulting in the growth of preferential flow paths and nonmonotonic moisture profiles. The standard approach to modeling isothermal fluid transport in a porous systems is to use Richards equation with equilibrium relationships for the driving potential and monotonic transport coefficients. However, it is well known that under these conditions, solutions to Richards' equation are unconditionally stable. This has left open the question of whether Richards' equation could predict the onset of flow field instability, and what is required to model it. Importantly, past work has shown that pore scale processes can actually cause nonequilibrium driving potentials to arise in unsaturated media. How these can lead to flow field instability can be understood using a form of spectral perturbation theory. Here the driving potential is represented using a Fourier expansion, which is then substituted into Richards equation. The result shows that the evolution of perturbations to the flow field are affected by the interaction between different wavelength components in the Fourier expansion. In particular, there are situations where nonequilibrium driving potentials can set up conditions that would allow the onset of instability in solutions to Richards' equation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.