Abstract

Multi-scale non-Gaussian time-series having stationary increments appear in a wide range of applications, particularly in finance and physics. We introduce stochastic models that capture intermittency phenomena such as crises or bursts of activity, time reversal asymmetries, and that can be estimated from a single realization of size N. Variations at multiple scales are separated with a wavelet transform. Non-Gaussian properties appear through dependencies of wavelet coefficients across scales. We define maximum entropy models from the joint correlation across time and scales of wavelet coefficients and their modulus. Diagonal matrix approximations are estimated with a wavelet representation of this joint correlation. The resulting diagonals define O(log3⁡N) moments that are called scattering spectra. A notion of wide-sense self-similarity is defined from the invariance of scattering spectra to scaling, which can be tested numerically on a single realization. We study the accuracy of maximum entropy scattering spectra models for fractional Brownian motions, Hawkes processes, multifractal random walks, as well as financial and turbulent time-series.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.