Abstract

Flow-system analysis is based on the concept of hierarchical groundwater flow systems. The topography of the water table, which is strongly related to the topography of the land surface, is a major factor in the hierarchical nesting of gravity-driven groundwater flow, resulting in flow systems of different orders of magnitude in lateral extent and depth of penetration. The concept of flow systems is extremely useful in the analysis of spatial and temporal scales and their mutual relationships. Basic equations on the laboratory scale are extended to larger, regional scales. Making use of Fourier analysis further develops Toth's original idea of topography-driven flow systems. In this way, the different spatial scales of the water table are separated in a natural way, leading to a simple expression for the penetration depth of a flow system. This decomposition leads also to the relationship between spatial and temporal scales. Analogous to flow systems, water bodies with different water quality may be called 'transport systems.' Field studies, numerical micro-scale modeling over macro-scale domains, and stochastic dispersion theory indicate that between systems with steady transport, the interfaces are relatively thin. The interfaces are much thinner than the relatively large mixing zones predicted by the conventional engineering approach to macrodispersion, in which relatively large, time-independent macrodispersion lengths are applied. A relatively simple alternative engineering approach is presented. For macrodispersion of propagating solute plumes, the alternative dispersion term gives the same results as the conventional engineering approach and gives correct results for steady-state transport.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.