Abstract

Highly sophisticated methods for detection and classification of signals and images are available. However, most of these methods are not robust to nonstationary variations such as imposed by Doppler effects or other forms of warping. Fourier methods handle time-shift or frequency shift variations in signals or spatial shifts in images. A number of methods. have been developed to overcome these problems. In this paper we discuss some specific approaches that have been motivated by time-frequency analysis. Methodologies developed for images can often be profitably used for fime-frequency analysis as well, since these representations are essentially images. The scale transform introduced by Cohen can join Fourier transforms in providing robust representations. Scale changes are common in many signal and image scenarios. We call the representation which results from appropriate transformations of the object of interest the Scale and Translation Invariant Representation or STIR. The STIR method is summarized and results from machine diagnosis, radar, marine mammal sounds, TMJ sounds, speech and word spotting are discussed. Some of the limitations and variations of the method are discussed to provide a rationale for selection of particular elements of the method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.