Abstract

A cellular material was proposed as an ideal candidate for multifunctional material achieving various optimal properties in many length scales. The superior performances on mechanical, thermal, electrical, and fluidic properties have been explored in analytic, numerical, and experimental studies. Since the cellular materials have wide range of potential applications in microscopic devices, characterization in small length scale gains more attentions recently. For this assessment, the atomistic approach as well as continuum approach becomes crucial to characterize its performance in multiscales. One of the key multifunctional features of the nanoporous microstructures would be high fluidic performance. Some studies investigated macroscopic transport properties, but less has been done to address the scale- and shape-dependent transport properties for their microscopic fluidics applications. In this study, we investigated complex flow patterns and transport properties of porous structures in microscopic scales. To address the geometry-dependent transport properties, a non-equilibrium molecular dynamics was employed in the atomistic scale. Various flow channels in the porous materials were introduced to address the size and shape effect of the flow patterns in small length scales.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.