Abstract

The effects of rotor scale and control system lag were examined for a variable-speed wind turbine. The scale study was performed on a teetered rotor with radii ranging between 22.5m and 33.75m. A 50% increase in radius more than doubled the rated power and annual energy capture. Using blade pitch to actively control fluctuating flatwise moments allowed for significant reductions in blade mass for a fixed fatigue life. A blade operated in closed-loop mode with a 33.75m radius weighed less than an open-loop blade with a 22.5m radius while maintaining the same fatigue life of 5×109 rotations. Actuator lag reduced the effectiveness of the control system. However, 50% reductions in blade mass were possible even when implementing a relatively slow actuator with a 1 sec. time constant. Other practical limits on blade mass may include fatigue from start/stop cycles, non-uniform turbulence, tower wake effects, and wind shear. The more aggressive control systems were found to have high control accelerations near 60 deg/s2, which may be excessive for realistic actuators. Two time lags were introduced into the control system when mean wind speed was estimated in a rapidly changing wind environment. The first lag was the length of time needed to determine mean wind speed, and therefore the mean control settings. The second was the frequency at which these mean control settings were changed. Preliminary results indicate that quickly changing the mean settings (every 10 seconds) and using a moderate length mean averaging time (60 seconds) resulted in the longest fatigue life. It was discovered that large power fluctuations occurred during open-loop operation which could cause sizeable damage to a realistic turbine generator. These fluctuations are reduced by one half or more when aerodynamic loads are actively controlled.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.