Abstract

The fundamental problem that we face is that a variety of large-scale problems in security, public safety, energy, ecology, health care and basic science all require that we process and understand increasingly vast amounts and variety of data. There is a growing impedance mismatch between data size/complexity and the human ability to understand and interact with data. Visual analytic tools are intended to help reduce that impedance mismatch by using analytic tools to reduce the amount of data that must be viewed, and visualization tools to help understand the patterns and relationships in the reduced data. But visual analytic tools must address a variety of scalability issues if they are to succeed. In this paper, we characterize the scalability and complexity issues in visual analytics. We discuss some highlights on progress that has been made in the past 5 years, as well as key areas where more progress is needed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.