Abstract
The molten pool shape and thermocapillary convection during melting or welding of metals or alloys are self-consistently predicted from parametric scale analysis for the first time. Determination of the molten pool shape is crucial due to its close relationship with the strength and properties of the fusion zone. In this work, surface tension coefficient is considered to be negative values, indicating an outward surface flow, whereas high Prandtl number represents the thermal boundary layer thickness to be less than that of momentum. Since Marangoni number is usually very high, the scaling of transport processes is divided into the hot, intermediate and cold corner regions on the flat free surface, boundary layers on the solid-liquid interface and ahead of the melting front. Coupling among distinct regions and thermal and momentum boundary layers, the results find that the width and depth of the pool can be determined as functions of Marangoni, Prandtl, Peclet, Stefan, and beam power numbers. The predictions agree with numerical computations and available experimental data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.