Abstract

The large-eddy simulation (LES) is an efficient method for the study of atmospheric boundary layer (ABL) flow over complex terrain. However, the robustness of LES is influenced by dynamics methods for the subgrid-scale stress, which remains one of the challenging issues. Here, we present a scale-adaptive LES methodology to study ABL flow over complex terrain. We present a canopy stress method for LES over complex terrain, which provides no-slip and shear-stress boundary conditions using a cost-effective Cartesian mesh. We consider measurements from wind tunnel experiments for the investigation of a scale-adaptive subgrid-scale modeling framework for LES of wind flow over a hilly terrain. A flow simulation is then performed on six cases of ABL flow over an idealized complex terrain. The LES result is also compared against the measurement of wind over Askervein hill. The dynamic and non-dynamic versions of the turbulence kinetic energy-based subgrid model are also considered to illustrate the scale-adaptive nature of subgrid-scale turbulence. It was observed that ignoring scale-adaptivity of subgrid turbulence, LES can under-predict shear-stress, turbulence kinetic energy, and other statistical measures of atmospheric turbulence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call