Abstract

Pedestrian tracking is an important research content in the field of computer vision. Tracking is achieved by predicting the position of a specific pedestrian in each frame of a video. Pedestrian tracking methods include neural network-based methods and traditional template matching-based methods, such as the SiamRPN (Siamese region proposal network), the DASiamRPN (distractor-aware SiamRPN), and the KCF (kernel correlation filter). The KCF algorithm has no scale-adaptive capability and cannot effectively solve the occlusion problem, and because of many defects of the HOG (histogram of oriented gradient) feature that the KCF uses, the tracking target is easy to lose. For those defects of the KCF algorithm, an improved KCF model, the SKCFMDF (scale-adaptive KCF mixed with deep feature) algorithm was designed. By introducing deep features extracted by a newly designed neural network and by introducing the YOLOv3 (you only look once version 3) object detection algorithm, which was also improved for more accurate detection, the model was able to achieve scale adaptation and to effectively solve the problem of occlusion and defects of the HOG feature. Compared with the original KCF, the success rate of pedestrian tracking under complex conditions was increased by 36%. Compared with the mainstream SiamRPN and DASiamRPN models, it was still able to achieve a small improvement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.