Abstract

Optical methods for viewing neuronal populations and projections in the intact mammalian brain are needed, but light scattering prevents imaging deep into brain structures. We imaged fixed brain tissue using Scale, an aqueous reagent that renders biological samples optically transparent but completely preserves fluorescent signals in the clarified structures. In Scale-treated mouse brain, neurons labeled with genetically encoded fluorescent proteins were visualized at an unprecedented depth in millimeter-scale networks and at subcellular resolution. The improved depth and scale of imaging permitted comprehensive three-dimensional reconstructions of cortical, callosal and hippocampal projections whose extent was limited only by the working distance of the objective lenses. In the intact neurogenic niche of the dentate gyrus, Scale allowed the quantitation of distances of neural stem cells to blood vessels. Our findings suggest that the Scale method will be useful for light microscopy-based connectomics of cellular networks in brain and other tissues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.