Abstract

We analyze the qualitative behavior of scalar-tensor cosmologies with an arbitrary monotonic \ensuremath{\omega}(\ensuremath{\Phi}) function. In particular, we are interested in scalar-tensor theories distinguishable at early epochs from general relativity (GR) but leading to predictions compatible with solar-system experiments. After extending the method developed by Lorentz-Petzold and Barrow, we establish the conditions required for convergence towards GR at t\ensuremath{\rightarrow}\ensuremath{\infty}. Then, we obtain all the asymptotic analytical solutions at early times which are possible in the framework of these theories. The subsequent qualitative evolution, from these asymptotic solutions until their later convergence towards GR, is analyzed by means of numerical computations. From this analysis, we are able to establish a classification of the different qualitative behaviors of scalar-tensor cosmological models with an arbitrary monotonic \ensuremath{\omega}(\ensuremath{\Phi}) function. \textcopyright{} 1996 The American Physical Society.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.