Abstract

In this paper, we conduct a study on the scalar field obtained from [Formula: see text] gravity via Weyl transformation of the spacetime metric [Formula: see text] from the Jordan frame to the Einstein frame. The scalar field is obtained as a result of the modification in the geometrical part of Einstein’s field equation of General Relativity. For the Hu–Sawicki model of [Formula: see text] gravity, we find the effective potential of the scalar field and calculate its mass. Our study shows that the scalar field (also named as scalaron) obtained from this model has the chameleonic property, i.e. the scalaron becomes light in the low-density region, while it becomes heavy in the high-density region of matter. Then it is found that the scalaron can be regarded as a dark matter (DM) candidate since the scalaron mass is found to be quite close to the mass of ultralight axions, a prime DM candidate. Thus, the scalaron in the Hu–Sawicki model of [Formula: see text] gravity behaves as DM. Further, a study on the evolution of the scalaron mass with the redshift is also carried out, which depicts that scalaron becomes light with expansion of the Universe and with different rates at different stages of the Universe.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call