Abstract
Scalarizing functions have been widely used to convert a multiobjective optimization problem into a single objective optimization problem. However, their use in solving computationally expensive multi-and many-objective optimization problems using Bayesian multiobjective optimization is scarce. Scalarizing functions can play a crucial role on the quality and number of evaluations required when doing the optimization. In this article, we compare 15 different scalarizing functions in the framework of Bayesian multiobjective optimization and build Gaussian process models on them. We use the expected improvement as infill criterion (or acquisition function) to update the models. In particular, we analyze the performance of different scalarizing functions on several benchmark problems with different number of objectives to be optimized. The review and experiments on different functions provide useful insights in using a scalarizing function, especially for problems with a large number of objectives.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.