Abstract
The aim of this paper is applying the scalarization technique to study some properties of the vector optimization problems under variable domination structure. We first introduce a nonlinear scalarization function of the vector-valued map and then study the relationships between the vector optimization problems under variable domination structure and its scalarized optimization problems. Moreover, we give the notions of DH-well-posedness and B-well-posedness under variable domination structure and prove that there exists a class of scalar problems whose well-posedness properties are equivalent to that of the original vector optimization problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.