Abstract

Steady laminar flows through porous media spontaneously generate Lagrangian chaos at pore scale, with qualitative implications for a range of transport, reactive, and biological processes. The characterization and understanding of mixing dynamics in these opaque environments is an outstanding challenge. We address this issue by developing a novel technique based upon high-resolution imaging of the scalar signature produced by push-pull flows through porous media samples. Owing to the rapid decorrelation of particle trajectories in chaotic flows, the scalar image measured outside the porous material is representative of insitu mixing dynamics. We present a theoretical framework for estimation of the Lyapunov exponent based on extension of Lagrangian stretching theories to correlated aggregation. This method provides a full characterization of chaotic mixing dynamics in a large class of porous materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call