Abstract

Nuclear magnetic resonance signals for 1H in simple chlorinated, brominated and deuterated liquids were detected at field strengths between 1 nT and a few μT to investigate the influence of scalar relaxation of the second kind (SR2K). SR2K describes the acceleration in magnetization decay rate for a spin-1/2 nucleus that is scalar coupled to a fast-relaxing quadrupolar nucleus. In agreement with simple theoretical models, the experimental data show that couplings to nuclei with small, nonzero quadrupole moments (2H) give rise to higher transverse relaxation rates at ultralow field than rapidly relaxing quadrupolar nuclei (Cl and Br). This behavior is opposite to the case normally encountered in high-field NMR, and demonstrates that certain nuclei in the spin system may be "weakly coupled" or even decoupled when the applied magnetic field is zero. The results show that the capability for precision determination of NMR frequencies and molecular structural information depends strongly on the composition and topology of the nuclear spin system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call