Abstract

Rhodium acetate, related rhodium carboxylates, and rhodium amide complexes are powerful catalysts for carbene chemistry. They readily promote the decomposition of diazo compounds and transfer the resulting carbene to a variety of substrates. There have been several quantum chemistry studies of these compounds, particularly of the acetate. These have all used non-relativistic methods, and all have shown optimized Rh-Rh bond lengths significantly longer than the experimental value. In this study we have surveyed several scalar relativistic DFT methods using Gaussian, Slater, and numerical basis functions (in DGAUSS, ADF, and DMOL3). Several combinations of exchange-correlation functionals with relativistic and non-relativistic effective core potentials (ECP) were investigated, as were non-relativistic and all electron scalar relativistic methods. The combination of the PW91 exchange and PW91 correlation functional with the Christiansen-Ermler ECP gave the best results: 2.3918 Å compared to the experimental value of 2.3855±0.0005 Å.

Highlights

  • The chemistry of rhodium acetate and related compounds as catalysts for carbene chemistry has been well established [1]

  • In this study we present the results of a comparison of DFT methods for computing the structure of the diaquo complex of rhodium acetate

  • The best agreement with the experimental value is given in italics

Read more

Summary

Introduction

The chemistry of rhodium acetate and related compounds as catalysts for carbene chemistry has been well established [1]. In this study we present the results of a comparison of DFT methods for computing the structure of the diaquo complex of rhodium acetate.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.