Abstract

Bag-of-Words (BoW) model based on SIFT has been widely used in large scale image retrieval applications. Feature quantization plays a crucial role in BoW model, which generates visual words from the high dimensional SIFT features, so as to adapt to the inverted file structure for indexing. Traditional feature quantization approaches suffer several problems: 1) high computational cost---visual words generation (codebook construction) is time consuming especially with large amount of features; 2) limited reliability---different collections of images may produce totally different codebooks and quantization error is hard to be controlled; 3) update inefficiency--once the codebook is constructed, it is not easy to be updated. In this paper, a novel feature quantization algorithm, scalar quantization, is proposed. With scalar quantization, a SIFT feature is quantized to a descriptive and discriminative bit-vector, of which the first tens of bits are taken out as code word. Our quantizer is independent of collections of images. In addition, the result of scalar quantization naturally lends itself to adapt to the classic inverted file structure for image indexing. Moreover, the quantization error can be flexibly reduced and controlled by efficiently enumerating nearest neighbors of code words. The performance of scalar quantization has been evaluated in partial-duplicate Web image search on a database of one million images. Experiments reveal that the proposed scalar quantization achieves a relatively 42% improvement in mean average precision over the baseline (hierarchical visual vocabulary tree approach), and also outperforms the state-of-the-art Hamming Embedding approach and soft assignment method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.