Abstract

The scalar structure of the overfire (fuel-lean) region of sooting turbulent diffusion flames was investigated, considering ethylene and acetylene burning in air. Measurements and predictions are reported of the mean concentrations of major gas species and mean soot volume fractions. Predictions were based on the conserved-scalar formalism in conjunction with the laminar flamelet approximation. The comparison between predictions and measurements was encouraging, suggesting that state relationships for major gas species, found in laminar diffusion flames, were preserved in the overfire region of the turbulent flames. Measurements also indicated nearly constant soot generation efficiencies from point to point in the overfire region for sufficiently long characteristic residence times to yield nearly universal soot volume fraction state relationships at the same conditions. However, effects attributed to finite-rate chemistry were observed at shorter characteristic residence times, causing spatial variations of soot generation efficiencies in the overfire region, with associated loss of universal soot volume fraction state relationships.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.