Abstract

Eswaran and Pope [Phys. Fluids 31, 506 (1988)] performed direct numerical simulations to study the influence of the initial scalar integral length scale on mixing in stationary, isotropic turbulence. Their data demonstrate that both the decay rate and the shape of the rms versus time curve depend on the initial value of the scalar-to-velocity integral length-scale ratio. The present paper discusses modifications of the high Reynolds number theory of Corrsin [AIChE J. 10, 870 (1964)]. The predictions mirror the behavior found in the moderate Reynolds number simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.