Abstract

Zero-field optically-pumped magnetometers are a room-temperature alternative to traditionally used super-conducting sensors detecting extremely weak magnetic fields. They offer certain advantages such as small size, flexible arrangement, reduced sensitivity in ambient fields offering the possibility for telemetry. Devices based on microfabricated technology are nowadays commercially available. The limited dynamic range and vector nature of the zero-field magnetometers restricts their use to environments heavily shielded against magnetic noise. Total-field (or scalar) magnetometers based on microfabricated cells have demonstrated subpicotesla sensitivities only recently. This work demonstrates a scalar magnetometer based on a single optical axis, 18 (3 × 3 × 2) mm3 microfabricated cell, with a noise floor of 70 fT/Hz1/2. The magnetometer operates in a large static magnetic field range, and and is based on a simple optical and electronic configuration that allows the development of dense sensor arrays. Different methods of magnetometer interrogation are demonstrated. The features of this magnetic field sensor hold promise for applications of miniature sensors in nonzero field environments such as unshielded magnetoencephalography (MEG) and brain-computer interfaces (BCI).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.