Abstract

We prove that any asymptotically locally Euclidean scalar-flat Kahler 4-orbifold whose isometry group contains a 2-torus is isometric, up to an orbifold covering, to a quaternionic-complex quotient of a k-dimensional quaternionic vector space by a (k−1)-torus. In order to do so, we first prove that any compact anti-self-dual 4-orbifold with positive Euler characteristic whose isometry group contains a 2-torus is conformally equivalent, up to an orbifold covering, to a quaternionic quotient of k-dimensional quaternionic projective space by a (k − 1)-torus.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.