Abstract

Following earlier work on the same topic, we consider once more scalar field theories on the world sheet parametrized by the light cone coordinates. For most of the way, we use the same approach as in the previous work, but there is an important new development. To avoid the light cone singularity at p^{+}=0, one world sheet coordinate had to be discretized, introducing a cutoff into the model.In the earlier work, this cutoff could not be removed, making the model unreliable. In the present article, we show that, by a careful choice of the mass counter term, both the infrared singularity at p^{+}=0 and the ultraviolet mass divergences can be simultaneously eliminated. We therefore finally have a cutoff independent model on a continuously parametrized world sheet. We study this model in the mean field approximation, and as before, we find solitonic solutions. Quantizing the solitonic collective coordinates gives rise to a string like model. However, in contrast to the standard string model, the trajectories here are not in general linear but curved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.