Abstract

We construct two solutions of the minimally coupled Einstein-scalar field equations, representing regular deformations of Schwarzschild black holes by a self-interacting, static, scalar field. One solution features an exponentially decaying scalar field and a triple-well interaction potential; the other one is completely analytic and sprouts Coulomb-like scalar hair. Both evade the no-hair theorem by having partially negative potential, in conflict with the dominant energy condition. The linear perturbation theory around such backgrounds is developed in general, and yields stability criteria in terms of effective potentials for an analog Schrödinger problem. We can test for more than half of the perturbation modes, and our solutions prove to be stable against those.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call