Abstract
This talk is based on the previous paper [X. G. He et al., Phys. Rev. D82 (2010) 035016]. We consider a scalar dark-matter model, the SM4+D, consisting of the standard model with four generations (SM4) and a real gauge-singlet scalar called darkon, D, as the weakly interacting massive particle (WIMP) dark-matter (DM) candidate. We explore constraints on the darkon sector of the SM4+D from WIMP DM direct-search experiments, and from the decay of a B meson into a kaon plus missing energy. Since the darkon-Higgs interaction may give rise to considerable enhancement of the Higgs invisible decay mode, the existence of the darkon could lead to the weakening or evasion of some of the restrictions on the Higgs mass in the presence of fourth-generation quarks. In addition, it can affect the flavor-changing decays of these new heavy quarks into a lighter quark and the Higgs boson, as the Higgs may subsequently decay invisibly. Therefore, we also study these flavor-changing neutral transitions involving the darkon, as well as the corresponding top-quark decay t → cDD, some of which may be observable at the Tevatron or LHC and thus provide additional tests for the SM4+D.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.