Abstract

The scalar beam measurement concept presented in this article is based on scanning the receiver's beam with an isotropic radiating source at three to four parallel cross planes along the presumable optical axis. The receiver is operated in heterodyne mode and the output IF power is recorded for each coordinate point of the radiating source. The collected data provides information for the Gaussian beam profile at the particular distance from the receiver. According to the properties of the fundamental Gaussian beam, the maximum power value is located on the axis of the beam. Therefore, obtaini.ng the coordinates of the beam center (of the maximum intensity) for each measured beam profile allows for the determination of the beam axis orientation. The location of the beam waist and its size can be calculated by solving a system of equations derived from the Gaussian beam theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.