Abstract

Experiments have been performed to investigate the leading edge of a lifted jet diffusion flame. The first portion of this study is a simultaneous particle image velocimetry (PIV) and planar laser-induced fluorescence (PLIF) investigation of a lifted methane flame. The simultaneous technique is an approach for establishing the 2-D velocity field in conjunction with the flame front location indicated by laser-induced fluorescence from CH radicals within the reaction zone. The results show that the lifted flame stabilizes in a region of relatively low incoming gas velocity. Furthermore, the radial movement of large-scale vortices appears to play a crucial role in local flame extinction. The second set of experiments involves a simultaneous CH and OH PLIF investigation of the same lifted flame. The relative positions of the two radical fields have remarkable agreement. The CH profile is indicative of the fuel-rich region of the reaction zone and closely follows the inner edge of the OH profile. Furthermore, the OH zone is more than three times as thick as the CH zone, and the structures in both images support the radial motion of vortices established by the joint PIV/CH-PLIF measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.