Abstract

We investigate the momentum dependence of the nucleon self-energy in nuclear matter. We apply the relativistic Brueckner-Hartree-Fock approach and adopt the Bonn A potential. A strong momentum dependence of the scalar and vector self-energy components can be observed when a commonly used pseudo-vector choice for the covariant representation of the T-matrix is applied. This momentum dependence is dominated by the pion exchange. We discuss the problems of this choice and its relations to on-shell ambiguities of the T-matrix representation. Starting from a complete pseudo-vector representation of the T-matrix, which reproduces correctly the pseudo-vector pion-exchange contributions at the Hartree-Fock level, we observe a much weaker momentum dependence of the self-energy. This fixes the range of the inherent uncertainty in the determination of the scalar and vector self-energy components. Comparing to other work, we find that extracting the self-energy components by a fit to the single particle potential leads to even more ambiguous results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.