Abstract

In dark-energy models where a scalar field is nonminimally coupled to the spacetime geometry, gravitational waves are expected to be supplemented with a scalar mode. Such scalar waves may interact with the standard tensor waves, thereby affecting their observed amplitude and polarization. Understanding the role of scalar waves is thus essential in order to design reliable gravitational-wave probes of dark energy and gravity beyond general relativity. In this article, we thoroughly investigate the propagation of scalar and tensor waves in the subset of Horndeski theories in which tensor waves propagate at the speed of light. We work at linear order in scalar and metric perturbations, in the eikonal regime, and for arbitrary scalar and spacetime backgrounds. We diagonalize the system of equations of motion and identify the physical tensor mode, which differs from the metric perturbation. We find that interactions between scalar and tensor waves generally depend on the scalar propagation speed. If the scalar waves are luminal or quasiluminal, then interactions are negligible. In the subluminal case, scalar-tensor interactions are effectively suppressed due to the incoherence of the wave's phases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.