Abstract

The speed of high-resolution optical imaging has been a rate-limiting factor for meso-scale mapping of brain structures and functional circuits, which is of fundamental importance for neuroscience research. Here, we describe a new microscopy method of Volumetric Imaging with Synchronized on-the-fly-scan and Readout (VISoR) for high-throughput, high-quality brain mapping. Combining synchronized scanning beam illumination and oblique imaging over cleared tissue sections in smooth motion, the VISoR system effectively eliminates motion blur to obtain undistorted images. By continuously imaging moving samples without stopping, the system achieves high-speed 3D image acquisition of an entire mouse brain within 1.5 hours, at a resolution capable of visualizing synaptic spines. A pipeline is developed for sample preparation, imaging, 3D image reconstruction and quantification. Our approach is compatible with immunofluorescence methods, enabling flexible cell-type specific brain mapping and is readily scalable for large biological samples such as primate brains. Using this system, we examined behaviorally relevant whole-brain neuronal activation in 16 c-Fos-shEGFP mice under resting or forced swimming conditions. Our results indicate the involvement of multiple subcortical areas in stress response. Intriguingly, neuronal activation in these areas exhibits striking individual variability among different animals, suggesting the necessity of sufficient cohort size for such studies.

Highlights

  • We describe a new light-sheet microscopy method for fast, large-scale volumetric imaging

  • Combining synchronized scanning illumination and oblique imaging over cleared, thick tissue sections in smooth motion, our approach achieves high-speed 3D image acquisition of an entire mouse brain within 2 hours, at a resolution capable of resolving synaptic spines. It is compatible with immunofluorescence labeling, enabling flexible cell-type specific brain mapping, and is readily scalable for large biological samples such as primate brain

  • To achieve fast volumetric imaging over a large range, we configured the opto-mechanical control of the system to allow horizontal non-stop smooth motion of the sample stage with on-the-fly image readout of oblique optical sections continuously (Fig. 1c, d)

Read more

Summary

Introduction

We describe a new light-sheet microscopy method for fast, large-scale volumetric imaging. Combining synchronized scanning illumination and oblique imaging over cleared, thick tissue sections in smooth motion, our approach achieves high-speed 3D image acquisition of an entire mouse brain within 2 hours, at a resolution capable of resolving synaptic spines.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.