Abstract
Every day, a huge amount of video data is generated worldwide and processing this kind of data requires powerful resources in terms of time, manpower, and hardware. Therefore, to help quickly understand the content of video data, video summarization methods have been proposed. Recently, sparse formulation-based methods have been found to be able to summarize a large amount of video compared to other methods. In this paper, we propose a new method in which video summarization is performed as training and selection sparse dictionary problem simultaneously. It is shown that the proposed method is able to improve the summarization of a large amount of video data compared to other methods. Finally, the performance of the proposed method is compared to state-of-the-art methods using standard data sets, in which the key frames are manually tagged. The obtained results demonstrate that the proposed method improves video summarization compared to other methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.