Abstract

Mobile video broadcasting service, or mobile TV, is expected to become a popular application for 3G wireless network operators. Most existing solutions for video Broadcast Multicast Services (BCMCS) in 3G networks employ a single transmission rate to cover all viewers. The system-wide video quality of the cell is therefore throttled by a few viewers close to the boundary, and is far from reaching the social-optimum allowed by the radio resources available at the base station. In this paper, we propose a novel scalable video broadcast/multicast solution, SV-BCMCS, that efficiently integrates scalable video coding, 3G broadcast, and ad-hoc forwarding to balance the system-wide and worst-case video quality of all viewers at 3G cell. We solve the optimal resource allocation problem in SV-BCMCS and develop practical helper discovery and relay routing algorithms. Moreover, we analytically study the gain of using ad-hoc relay, in terms of users' effective distance to the base station. Through extensive real video sequence driven simulations, we show that SV-BCMCS significantly improves the system-wide perceived video quality. The users' average PSNR increases by as much as 1.70 dB with slight quality degradation for the few users close to the 3G cell boundary.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call